3.2.7 \(\int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx\) [107]

3.2.7.1 Optimal result
3.2.7.2 Mathematica [A] (verified)
3.2.7.3 Rubi [A] (verified)
3.2.7.4 Maple [B] (verified)
3.2.7.5 Fricas [B] (verification not implemented)
3.2.7.6 Sympy [F]
3.2.7.7 Maxima [B] (verification not implemented)
3.2.7.8 Giac [B] (verification not implemented)
3.2.7.9 Mupad [F(-1)]

3.2.7.1 Optimal result

Integrand size = 29, antiderivative size = 225 \[ \int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx=-\frac {\left (f g^2-e g h+d h^2\right ) \sqrt {a+c x^2}}{2 h \left (c g^2+a h^2\right ) (g+h x)^2}+\frac {\left (2 a h^2 (2 f g-e h)+c g \left (f g^2+h (e g-3 d h)\right )\right ) \sqrt {a+c x^2}}{2 h \left (c g^2+a h^2\right )^2 (g+h x)}-\frac {\left (2 c^2 d g^2+2 a^2 f h^2-a c \left (f g^2-h (3 e g-d h)\right )\right ) \text {arctanh}\left (\frac {a h-c g x}{\sqrt {c g^2+a h^2} \sqrt {a+c x^2}}\right )}{2 \left (c g^2+a h^2\right )^{5/2}} \]

output
-1/2*(2*c^2*d*g^2+2*a^2*f*h^2-a*c*(f*g^2-h*(-d*h+3*e*g)))*arctanh((-c*g*x+ 
a*h)/(a*h^2+c*g^2)^(1/2)/(c*x^2+a)^(1/2))/(a*h^2+c*g^2)^(5/2)-1/2*(d*h^2-e 
*g*h+f*g^2)*(c*x^2+a)^(1/2)/h/(a*h^2+c*g^2)/(h*x+g)^2+1/2*(2*a*h^2*(-e*h+2 
*f*g)+c*g*(f*g^2+h*(-3*d*h+e*g)))*(c*x^2+a)^(1/2)/h/(a*h^2+c*g^2)^2/(h*x+g 
)
 
3.2.7.2 Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.90 \[ \int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx=\frac {\sqrt {a+c x^2} \left (c g \left (f g^2 x+e g (2 g+h x)-d h (4 g+3 h x)\right )-a h (-f g (3 g+4 h x)+h (d h+e (g+2 h x)))\right )}{2 \left (c g^2+a h^2\right )^2 (g+h x)^2}-\frac {\left (2 c^2 d g^2+2 a^2 f h^2-a c \left (f g^2+h (-3 e g+d h)\right )\right ) \arctan \left (\frac {\sqrt {c} (g+h x)-h \sqrt {a+c x^2}}{\sqrt {-c g^2-a h^2}}\right )}{\left (-c g^2-a h^2\right )^{5/2}} \]

input
Integrate[(d + e*x + f*x^2)/((g + h*x)^3*Sqrt[a + c*x^2]),x]
 
output
(Sqrt[a + c*x^2]*(c*g*(f*g^2*x + e*g*(2*g + h*x) - d*h*(4*g + 3*h*x)) - a* 
h*(-(f*g*(3*g + 4*h*x)) + h*(d*h + e*(g + 2*h*x)))))/(2*(c*g^2 + a*h^2)^2* 
(g + h*x)^2) - ((2*c^2*d*g^2 + 2*a^2*f*h^2 - a*c*(f*g^2 + h*(-3*e*g + d*h) 
))*ArcTan[(Sqrt[c]*(g + h*x) - h*Sqrt[a + c*x^2])/Sqrt[-(c*g^2) - a*h^2]]) 
/(-(c*g^2) - a*h^2)^(5/2)
 
3.2.7.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {2182, 25, 679, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x+f x^2}{\sqrt {a+c x^2} (g+h x)^3} \, dx\)

\(\Big \downarrow \) 2182

\(\displaystyle -\frac {\int -\frac {2 (c d g-a f g+a e h)+\left (2 a f h+c \left (\frac {f g^2}{h}+e g-d h\right )\right ) x}{(g+h x)^2 \sqrt {c x^2+a}}dx}{2 \left (a h^2+c g^2\right )}-\frac {\sqrt {a+c x^2} \left (d h^2-e g h+f g^2\right )}{2 h (g+h x)^2 \left (a h^2+c g^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {2 (c d g-a f g+a e h)+\left (2 a f h+c \left (\frac {f g^2}{h}+e g-d h\right )\right ) x}{(g+h x)^2 \sqrt {c x^2+a}}dx}{2 \left (a h^2+c g^2\right )}-\frac {\sqrt {a+c x^2} \left (d h^2-e g h+f g^2\right )}{2 h (g+h x)^2 \left (a h^2+c g^2\right )}\)

\(\Big \downarrow \) 679

\(\displaystyle \frac {\frac {\left (2 a^2 f h^2-a c \left (f g^2-h (3 e g-d h)\right )+2 c^2 d g^2\right ) \int \frac {1}{(g+h x) \sqrt {c x^2+a}}dx}{a h^2+c g^2}+\frac {\sqrt {a+c x^2} \left (2 a h^2 (2 f g-e h)+c g h (e g-3 d h)+c f g^3\right )}{h (g+h x) \left (a h^2+c g^2\right )}}{2 \left (a h^2+c g^2\right )}-\frac {\sqrt {a+c x^2} \left (d h^2-e g h+f g^2\right )}{2 h (g+h x)^2 \left (a h^2+c g^2\right )}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {\frac {\sqrt {a+c x^2} \left (2 a h^2 (2 f g-e h)+c g h (e g-3 d h)+c f g^3\right )}{h (g+h x) \left (a h^2+c g^2\right )}-\frac {\left (2 a^2 f h^2-a c \left (f g^2-h (3 e g-d h)\right )+2 c^2 d g^2\right ) \int \frac {1}{c g^2+a h^2-\frac {(a h-c g x)^2}{c x^2+a}}d\frac {a h-c g x}{\sqrt {c x^2+a}}}{a h^2+c g^2}}{2 \left (a h^2+c g^2\right )}-\frac {\sqrt {a+c x^2} \left (d h^2-e g h+f g^2\right )}{2 h (g+h x)^2 \left (a h^2+c g^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\sqrt {a+c x^2} \left (2 a h^2 (2 f g-e h)+c g h (e g-3 d h)+c f g^3\right )}{h (g+h x) \left (a h^2+c g^2\right )}-\frac {\text {arctanh}\left (\frac {a h-c g x}{\sqrt {a+c x^2} \sqrt {a h^2+c g^2}}\right ) \left (2 a^2 f h^2-a c \left (f g^2-h (3 e g-d h)\right )+2 c^2 d g^2\right )}{\left (a h^2+c g^2\right )^{3/2}}}{2 \left (a h^2+c g^2\right )}-\frac {\sqrt {a+c x^2} \left (d h^2-e g h+f g^2\right )}{2 h (g+h x)^2 \left (a h^2+c g^2\right )}\)

input
Int[(d + e*x + f*x^2)/((g + h*x)^3*Sqrt[a + c*x^2]),x]
 
output
-1/2*((f*g^2 - e*g*h + d*h^2)*Sqrt[a + c*x^2])/(h*(c*g^2 + a*h^2)*(g + h*x 
)^2) + (((c*f*g^3 + c*g*h*(e*g - 3*d*h) + 2*a*h^2*(2*f*g - e*h))*Sqrt[a + 
c*x^2])/(h*(c*g^2 + a*h^2)*(g + h*x)) - ((2*c^2*d*g^2 + 2*a^2*f*h^2 - a*c* 
(f*g^2 - h*(3*e*g - d*h)))*ArcTanh[(a*h - c*g*x)/(Sqrt[c*g^2 + a*h^2]*Sqrt 
[a + c*x^2])])/(c*g^2 + a*h^2)^(3/2))/(2*(c*g^2 + a*h^2))
 

3.2.7.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 679
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1 
)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[(c*d*f + a*e*g)/(c*d^2 + a*e^2) 
 Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, 
 p}, x] && EqQ[Simplify[m + 2*p + 3], 0]
 

rule 2182
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 With[{Qx = PolynomialQuotient[Pq, d + e*x, x], R = PolynomialRemainder[Pq, 
 d + e*x, x]}, Simp[e*R*(d + e*x)^(m + 1)*((a + b*x^2)^(p + 1)/((m + 1)*(b* 
d^2 + a*e^2))), x] + Simp[1/((m + 1)*(b*d^2 + a*e^2))   Int[(d + e*x)^(m + 
1)*(a + b*x^2)^p*ExpandToSum[(m + 1)*(b*d^2 + a*e^2)*Qx + b*d*R*(m + 1) - b 
*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, d, e, p}, x] && PolyQ[Pq, 
 x] && NeQ[b*d^2 + a*e^2, 0] && LtQ[m, -1]
 
3.2.7.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(809\) vs. \(2(209)=418\).

Time = 0.64 (sec) , antiderivative size = 810, normalized size of antiderivative = 3.60

method result size
default \(-\frac {f \ln \left (\frac {\frac {2 a \,h^{2}+2 c \,g^{2}}{h^{2}}-\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+2 \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}\, \sqrt {\left (x +\frac {g}{h}\right )^{2} c -\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}{x +\frac {g}{h}}\right )}{h^{3} \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}+\frac {\left (e h -2 f g \right ) \left (-\frac {h^{2} \sqrt {\left (x +\frac {g}{h}\right )^{2} c -\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}{\left (a \,h^{2}+c \,g^{2}\right ) \left (x +\frac {g}{h}\right )}-\frac {c g h \ln \left (\frac {\frac {2 a \,h^{2}+2 c \,g^{2}}{h^{2}}-\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+2 \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}\, \sqrt {\left (x +\frac {g}{h}\right )^{2} c -\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}{x +\frac {g}{h}}\right )}{\left (a \,h^{2}+c \,g^{2}\right ) \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}\right )}{h^{4}}+\frac {\left (d \,h^{2}-e g h +f \,g^{2}\right ) \left (-\frac {h^{2} \sqrt {\left (x +\frac {g}{h}\right )^{2} c -\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}{2 \left (a \,h^{2}+c \,g^{2}\right ) \left (x +\frac {g}{h}\right )^{2}}+\frac {3 c g h \left (-\frac {h^{2} \sqrt {\left (x +\frac {g}{h}\right )^{2} c -\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}{\left (a \,h^{2}+c \,g^{2}\right ) \left (x +\frac {g}{h}\right )}-\frac {c g h \ln \left (\frac {\frac {2 a \,h^{2}+2 c \,g^{2}}{h^{2}}-\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+2 \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}\, \sqrt {\left (x +\frac {g}{h}\right )^{2} c -\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}{x +\frac {g}{h}}\right )}{\left (a \,h^{2}+c \,g^{2}\right ) \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}\right )}{2 \left (a \,h^{2}+c \,g^{2}\right )}+\frac {c \,h^{2} \ln \left (\frac {\frac {2 a \,h^{2}+2 c \,g^{2}}{h^{2}}-\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+2 \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}\, \sqrt {\left (x +\frac {g}{h}\right )^{2} c -\frac {2 c g \left (x +\frac {g}{h}\right )}{h}+\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}{x +\frac {g}{h}}\right )}{2 \left (a \,h^{2}+c \,g^{2}\right ) \sqrt {\frac {a \,h^{2}+c \,g^{2}}{h^{2}}}}\right )}{h^{5}}\) \(810\)

input
int((f*x^2+e*x+d)/(h*x+g)^3/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
-f/h^3/((a*h^2+c*g^2)/h^2)^(1/2)*ln((2*(a*h^2+c*g^2)/h^2-2*c*g/h*(x+1/h*g) 
+2*((a*h^2+c*g^2)/h^2)^(1/2)*((x+1/h*g)^2*c-2*c*g/h*(x+1/h*g)+(a*h^2+c*g^2 
)/h^2)^(1/2))/(x+1/h*g))+(e*h-2*f*g)/h^4*(-1/(a*h^2+c*g^2)*h^2/(x+1/h*g)*( 
(x+1/h*g)^2*c-2*c*g/h*(x+1/h*g)+(a*h^2+c*g^2)/h^2)^(1/2)-c*g*h/(a*h^2+c*g^ 
2)/((a*h^2+c*g^2)/h^2)^(1/2)*ln((2*(a*h^2+c*g^2)/h^2-2*c*g/h*(x+1/h*g)+2*( 
(a*h^2+c*g^2)/h^2)^(1/2)*((x+1/h*g)^2*c-2*c*g/h*(x+1/h*g)+(a*h^2+c*g^2)/h^ 
2)^(1/2))/(x+1/h*g)))+(d*h^2-e*g*h+f*g^2)/h^5*(-1/2/(a*h^2+c*g^2)*h^2/(x+1 
/h*g)^2*((x+1/h*g)^2*c-2*c*g/h*(x+1/h*g)+(a*h^2+c*g^2)/h^2)^(1/2)+3/2*c*g* 
h/(a*h^2+c*g^2)*(-1/(a*h^2+c*g^2)*h^2/(x+1/h*g)*((x+1/h*g)^2*c-2*c*g/h*(x+ 
1/h*g)+(a*h^2+c*g^2)/h^2)^(1/2)-c*g*h/(a*h^2+c*g^2)/((a*h^2+c*g^2)/h^2)^(1 
/2)*ln((2*(a*h^2+c*g^2)/h^2-2*c*g/h*(x+1/h*g)+2*((a*h^2+c*g^2)/h^2)^(1/2)* 
((x+1/h*g)^2*c-2*c*g/h*(x+1/h*g)+(a*h^2+c*g^2)/h^2)^(1/2))/(x+1/h*g)))+1/2 
*c/(a*h^2+c*g^2)*h^2/((a*h^2+c*g^2)/h^2)^(1/2)*ln((2*(a*h^2+c*g^2)/h^2-2*c 
*g/h*(x+1/h*g)+2*((a*h^2+c*g^2)/h^2)^(1/2)*((x+1/h*g)^2*c-2*c*g/h*(x+1/h*g 
)+(a*h^2+c*g^2)/h^2)^(1/2))/(x+1/h*g)))
 
3.2.7.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 531 vs. \(2 (210) = 420\).

Time = 4.71 (sec) , antiderivative size = 1088, normalized size of antiderivative = 4.84 \[ \int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx=\left [\frac {{\left (3 \, a c e g^{3} h + {\left (2 \, c^{2} d - a c f\right )} g^{4} - {\left (a c d - 2 \, a^{2} f\right )} g^{2} h^{2} + {\left (3 \, a c e g h^{3} + {\left (2 \, c^{2} d - a c f\right )} g^{2} h^{2} - {\left (a c d - 2 \, a^{2} f\right )} h^{4}\right )} x^{2} + 2 \, {\left (3 \, a c e g^{2} h^{2} + {\left (2 \, c^{2} d - a c f\right )} g^{3} h - {\left (a c d - 2 \, a^{2} f\right )} g h^{3}\right )} x\right )} \sqrt {c g^{2} + a h^{2}} \log \left (\frac {2 \, a c g h x - a c g^{2} - 2 \, a^{2} h^{2} - {\left (2 \, c^{2} g^{2} + a c h^{2}\right )} x^{2} - 2 \, \sqrt {c g^{2} + a h^{2}} {\left (c g x - a h\right )} \sqrt {c x^{2} + a}}{h^{2} x^{2} + 2 \, g h x + g^{2}}\right ) + 2 \, {\left (2 \, c^{2} e g^{5} + a c e g^{3} h^{2} - a^{2} e g h^{4} - a^{2} d h^{5} - {\left (4 \, c^{2} d - 3 \, a c f\right )} g^{4} h - {\left (5 \, a c d - 3 \, a^{2} f\right )} g^{2} h^{3} + {\left (c^{2} f g^{5} + c^{2} e g^{4} h - a c e g^{2} h^{3} - 2 \, a^{2} e h^{5} - {\left (3 \, c^{2} d - 5 \, a c f\right )} g^{3} h^{2} - {\left (3 \, a c d - 4 \, a^{2} f\right )} g h^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{4 \, {\left (c^{3} g^{8} + 3 \, a c^{2} g^{6} h^{2} + 3 \, a^{2} c g^{4} h^{4} + a^{3} g^{2} h^{6} + {\left (c^{3} g^{6} h^{2} + 3 \, a c^{2} g^{4} h^{4} + 3 \, a^{2} c g^{2} h^{6} + a^{3} h^{8}\right )} x^{2} + 2 \, {\left (c^{3} g^{7} h + 3 \, a c^{2} g^{5} h^{3} + 3 \, a^{2} c g^{3} h^{5} + a^{3} g h^{7}\right )} x\right )}}, -\frac {{\left (3 \, a c e g^{3} h + {\left (2 \, c^{2} d - a c f\right )} g^{4} - {\left (a c d - 2 \, a^{2} f\right )} g^{2} h^{2} + {\left (3 \, a c e g h^{3} + {\left (2 \, c^{2} d - a c f\right )} g^{2} h^{2} - {\left (a c d - 2 \, a^{2} f\right )} h^{4}\right )} x^{2} + 2 \, {\left (3 \, a c e g^{2} h^{2} + {\left (2 \, c^{2} d - a c f\right )} g^{3} h - {\left (a c d - 2 \, a^{2} f\right )} g h^{3}\right )} x\right )} \sqrt {-c g^{2} - a h^{2}} \arctan \left (\frac {\sqrt {-c g^{2} - a h^{2}} {\left (c g x - a h\right )} \sqrt {c x^{2} + a}}{a c g^{2} + a^{2} h^{2} + {\left (c^{2} g^{2} + a c h^{2}\right )} x^{2}}\right ) - {\left (2 \, c^{2} e g^{5} + a c e g^{3} h^{2} - a^{2} e g h^{4} - a^{2} d h^{5} - {\left (4 \, c^{2} d - 3 \, a c f\right )} g^{4} h - {\left (5 \, a c d - 3 \, a^{2} f\right )} g^{2} h^{3} + {\left (c^{2} f g^{5} + c^{2} e g^{4} h - a c e g^{2} h^{3} - 2 \, a^{2} e h^{5} - {\left (3 \, c^{2} d - 5 \, a c f\right )} g^{3} h^{2} - {\left (3 \, a c d - 4 \, a^{2} f\right )} g h^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{2 \, {\left (c^{3} g^{8} + 3 \, a c^{2} g^{6} h^{2} + 3 \, a^{2} c g^{4} h^{4} + a^{3} g^{2} h^{6} + {\left (c^{3} g^{6} h^{2} + 3 \, a c^{2} g^{4} h^{4} + 3 \, a^{2} c g^{2} h^{6} + a^{3} h^{8}\right )} x^{2} + 2 \, {\left (c^{3} g^{7} h + 3 \, a c^{2} g^{5} h^{3} + 3 \, a^{2} c g^{3} h^{5} + a^{3} g h^{7}\right )} x\right )}}\right ] \]

input
integrate((f*x^2+e*x+d)/(h*x+g)^3/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
[1/4*((3*a*c*e*g^3*h + (2*c^2*d - a*c*f)*g^4 - (a*c*d - 2*a^2*f)*g^2*h^2 + 
 (3*a*c*e*g*h^3 + (2*c^2*d - a*c*f)*g^2*h^2 - (a*c*d - 2*a^2*f)*h^4)*x^2 + 
 2*(3*a*c*e*g^2*h^2 + (2*c^2*d - a*c*f)*g^3*h - (a*c*d - 2*a^2*f)*g*h^3)*x 
)*sqrt(c*g^2 + a*h^2)*log((2*a*c*g*h*x - a*c*g^2 - 2*a^2*h^2 - (2*c^2*g^2 
+ a*c*h^2)*x^2 - 2*sqrt(c*g^2 + a*h^2)*(c*g*x - a*h)*sqrt(c*x^2 + a))/(h^2 
*x^2 + 2*g*h*x + g^2)) + 2*(2*c^2*e*g^5 + a*c*e*g^3*h^2 - a^2*e*g*h^4 - a^ 
2*d*h^5 - (4*c^2*d - 3*a*c*f)*g^4*h - (5*a*c*d - 3*a^2*f)*g^2*h^3 + (c^2*f 
*g^5 + c^2*e*g^4*h - a*c*e*g^2*h^3 - 2*a^2*e*h^5 - (3*c^2*d - 5*a*c*f)*g^3 
*h^2 - (3*a*c*d - 4*a^2*f)*g*h^4)*x)*sqrt(c*x^2 + a))/(c^3*g^8 + 3*a*c^2*g 
^6*h^2 + 3*a^2*c*g^4*h^4 + a^3*g^2*h^6 + (c^3*g^6*h^2 + 3*a*c^2*g^4*h^4 + 
3*a^2*c*g^2*h^6 + a^3*h^8)*x^2 + 2*(c^3*g^7*h + 3*a*c^2*g^5*h^3 + 3*a^2*c* 
g^3*h^5 + a^3*g*h^7)*x), -1/2*((3*a*c*e*g^3*h + (2*c^2*d - a*c*f)*g^4 - (a 
*c*d - 2*a^2*f)*g^2*h^2 + (3*a*c*e*g*h^3 + (2*c^2*d - a*c*f)*g^2*h^2 - (a* 
c*d - 2*a^2*f)*h^4)*x^2 + 2*(3*a*c*e*g^2*h^2 + (2*c^2*d - a*c*f)*g^3*h - ( 
a*c*d - 2*a^2*f)*g*h^3)*x)*sqrt(-c*g^2 - a*h^2)*arctan(sqrt(-c*g^2 - a*h^2 
)*(c*g*x - a*h)*sqrt(c*x^2 + a)/(a*c*g^2 + a^2*h^2 + (c^2*g^2 + a*c*h^2)*x 
^2)) - (2*c^2*e*g^5 + a*c*e*g^3*h^2 - a^2*e*g*h^4 - a^2*d*h^5 - (4*c^2*d - 
 3*a*c*f)*g^4*h - (5*a*c*d - 3*a^2*f)*g^2*h^3 + (c^2*f*g^5 + c^2*e*g^4*h - 
 a*c*e*g^2*h^3 - 2*a^2*e*h^5 - (3*c^2*d - 5*a*c*f)*g^3*h^2 - (3*a*c*d - 4* 
a^2*f)*g*h^4)*x)*sqrt(c*x^2 + a))/(c^3*g^8 + 3*a*c^2*g^6*h^2 + 3*a^2*c*...
 
3.2.7.6 Sympy [F]

\[ \int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx=\int \frac {d + e x + f x^{2}}{\sqrt {a + c x^{2}} \left (g + h x\right )^{3}}\, dx \]

input
integrate((f*x**2+e*x+d)/(h*x+g)**3/(c*x**2+a)**(1/2),x)
 
output
Integral((d + e*x + f*x**2)/(sqrt(a + c*x**2)*(g + h*x)**3), x)
 
3.2.7.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 896 vs. \(2 (210) = 420\).

Time = 0.24 (sec) , antiderivative size = 896, normalized size of antiderivative = 3.98 \[ \int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx=-\frac {3 \, \sqrt {c x^{2} + a} c f g^{3}}{2 \, {\left (c^{2} g^{4} h^{2} x + 2 \, a c g^{2} h^{4} x + a^{2} h^{6} x + c^{2} g^{5} h + 2 \, a c g^{3} h^{3} + a^{2} g h^{5}\right )}} + \frac {3 \, \sqrt {c x^{2} + a} c e g^{2}}{2 \, {\left (c^{2} g^{4} h x + 2 \, a c g^{2} h^{3} x + a^{2} h^{5} x + c^{2} g^{5} + 2 \, a c g^{3} h^{2} + a^{2} g h^{4}\right )}} - \frac {3 \, \sqrt {c x^{2} + a} c d g}{2 \, {\left (c^{2} g^{4} x + 2 \, a c g^{2} h^{2} x + a^{2} h^{4} x + \frac {c^{2} g^{5}}{h} + 2 \, a c g^{3} h + a^{2} g h^{3}\right )}} - \frac {\sqrt {c x^{2} + a} f g^{2}}{2 \, {\left (c g^{2} h^{3} x^{2} + a h^{5} x^{2} + 2 \, c g^{3} h^{2} x + 2 \, a g h^{4} x + c g^{4} h + a g^{2} h^{3}\right )}} + \frac {\sqrt {c x^{2} + a} e g}{2 \, {\left (c g^{2} h^{2} x^{2} + a h^{4} x^{2} + 2 \, c g^{3} h x + 2 \, a g h^{3} x + c g^{4} + a g^{2} h^{2}\right )}} + \frac {2 \, \sqrt {c x^{2} + a} f g}{c g^{2} h^{2} x + a h^{4} x + c g^{3} h + a g h^{3}} - \frac {\sqrt {c x^{2} + a} d}{2 \, {\left (c g^{2} h x^{2} + a h^{3} x^{2} + 2 \, c g^{3} x + 2 \, a g h^{2} x + \frac {c g^{4}}{h} + a g^{2} h\right )}} - \frac {\sqrt {c x^{2} + a} e}{c g^{2} h x + a h^{3} x + c g^{3} + a g h^{2}} + \frac {3 \, c^{2} f g^{4} \operatorname {arsinh}\left (\frac {c g x}{\sqrt {a c} {\left | h x + g \right |}} - \frac {a h}{\sqrt {a c} {\left | h x + g \right |}}\right )}{2 \, {\left (a + \frac {c g^{2}}{h^{2}}\right )}^{\frac {5}{2}} h^{7}} - \frac {3 \, c^{2} e g^{3} \operatorname {arsinh}\left (\frac {c g x}{\sqrt {a c} {\left | h x + g \right |}} - \frac {a h}{\sqrt {a c} {\left | h x + g \right |}}\right )}{2 \, {\left (a + \frac {c g^{2}}{h^{2}}\right )}^{\frac {5}{2}} h^{6}} + \frac {3 \, c^{2} d g^{2} \operatorname {arsinh}\left (\frac {c g x}{\sqrt {a c} {\left | h x + g \right |}} - \frac {a h}{\sqrt {a c} {\left | h x + g \right |}}\right )}{2 \, {\left (a + \frac {c g^{2}}{h^{2}}\right )}^{\frac {5}{2}} h^{5}} - \frac {5 \, c f g^{2} \operatorname {arsinh}\left (\frac {c g x}{\sqrt {a c} {\left | h x + g \right |}} - \frac {a h}{\sqrt {a c} {\left | h x + g \right |}}\right )}{2 \, {\left (a + \frac {c g^{2}}{h^{2}}\right )}^{\frac {3}{2}} h^{5}} + \frac {3 \, c e g \operatorname {arsinh}\left (\frac {c g x}{\sqrt {a c} {\left | h x + g \right |}} - \frac {a h}{\sqrt {a c} {\left | h x + g \right |}}\right )}{2 \, {\left (a + \frac {c g^{2}}{h^{2}}\right )}^{\frac {3}{2}} h^{4}} - \frac {c d \operatorname {arsinh}\left (\frac {c g x}{\sqrt {a c} {\left | h x + g \right |}} - \frac {a h}{\sqrt {a c} {\left | h x + g \right |}}\right )}{2 \, {\left (a + \frac {c g^{2}}{h^{2}}\right )}^{\frac {3}{2}} h^{3}} + \frac {f \operatorname {arsinh}\left (\frac {c g x}{\sqrt {a c} {\left | h x + g \right |}} - \frac {a h}{\sqrt {a c} {\left | h x + g \right |}}\right )}{\sqrt {a + \frac {c g^{2}}{h^{2}}} h^{3}} \]

input
integrate((f*x^2+e*x+d)/(h*x+g)^3/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
-3/2*sqrt(c*x^2 + a)*c*f*g^3/(c^2*g^4*h^2*x + 2*a*c*g^2*h^4*x + a^2*h^6*x 
+ c^2*g^5*h + 2*a*c*g^3*h^3 + a^2*g*h^5) + 3/2*sqrt(c*x^2 + a)*c*e*g^2/(c^ 
2*g^4*h*x + 2*a*c*g^2*h^3*x + a^2*h^5*x + c^2*g^5 + 2*a*c*g^3*h^2 + a^2*g* 
h^4) - 3/2*sqrt(c*x^2 + a)*c*d*g/(c^2*g^4*x + 2*a*c*g^2*h^2*x + a^2*h^4*x 
+ c^2*g^5/h + 2*a*c*g^3*h + a^2*g*h^3) - 1/2*sqrt(c*x^2 + a)*f*g^2/(c*g^2* 
h^3*x^2 + a*h^5*x^2 + 2*c*g^3*h^2*x + 2*a*g*h^4*x + c*g^4*h + a*g^2*h^3) + 
 1/2*sqrt(c*x^2 + a)*e*g/(c*g^2*h^2*x^2 + a*h^4*x^2 + 2*c*g^3*h*x + 2*a*g* 
h^3*x + c*g^4 + a*g^2*h^2) + 2*sqrt(c*x^2 + a)*f*g/(c*g^2*h^2*x + a*h^4*x 
+ c*g^3*h + a*g*h^3) - 1/2*sqrt(c*x^2 + a)*d/(c*g^2*h*x^2 + a*h^3*x^2 + 2* 
c*g^3*x + 2*a*g*h^2*x + c*g^4/h + a*g^2*h) - sqrt(c*x^2 + a)*e/(c*g^2*h*x 
+ a*h^3*x + c*g^3 + a*g*h^2) + 3/2*c^2*f*g^4*arcsinh(c*g*x/(sqrt(a*c)*abs( 
h*x + g)) - a*h/(sqrt(a*c)*abs(h*x + g)))/((a + c*g^2/h^2)^(5/2)*h^7) - 3/ 
2*c^2*e*g^3*arcsinh(c*g*x/(sqrt(a*c)*abs(h*x + g)) - a*h/(sqrt(a*c)*abs(h* 
x + g)))/((a + c*g^2/h^2)^(5/2)*h^6) + 3/2*c^2*d*g^2*arcsinh(c*g*x/(sqrt(a 
*c)*abs(h*x + g)) - a*h/(sqrt(a*c)*abs(h*x + g)))/((a + c*g^2/h^2)^(5/2)*h 
^5) - 5/2*c*f*g^2*arcsinh(c*g*x/(sqrt(a*c)*abs(h*x + g)) - a*h/(sqrt(a*c)* 
abs(h*x + g)))/((a + c*g^2/h^2)^(3/2)*h^5) + 3/2*c*e*g*arcsinh(c*g*x/(sqrt 
(a*c)*abs(h*x + g)) - a*h/(sqrt(a*c)*abs(h*x + g)))/((a + c*g^2/h^2)^(3/2) 
*h^4) - 1/2*c*d*arcsinh(c*g*x/(sqrt(a*c)*abs(h*x + g)) - a*h/(sqrt(a*c)*ab 
s(h*x + g)))/((a + c*g^2/h^2)^(3/2)*h^3) + f*arcsinh(c*g*x/(sqrt(a*c)*a...
 
3.2.7.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 839 vs. \(2 (210) = 420\).

Time = 0.30 (sec) , antiderivative size = 839, normalized size of antiderivative = 3.73 \[ \int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx=-\frac {{\left (2 \, c^{2} d g^{2} - a c f g^{2} + 3 \, a c e g h - a c d h^{2} + 2 \, a^{2} f h^{2}\right )} \arctan \left (\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} h + \sqrt {c} g}{\sqrt {-c g^{2} - a h^{2}}}\right )}{{\left (c^{2} g^{4} + 2 \, a c g^{2} h^{2} + a^{2} h^{4}\right )} \sqrt {-c g^{2} - a h^{2}}} + \frac {2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} c^{2} f g^{4} h - 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} c^{2} d g^{2} h^{3} + 5 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a c f g^{2} h^{3} - 3 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a c e g h^{4} + {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a c d h^{5} + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} c^{\frac {5}{2}} f g^{5} + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} c^{\frac {5}{2}} e g^{4} h - 6 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} c^{\frac {5}{2}} d g^{3} h^{2} + 7 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a c^{\frac {3}{2}} f g^{3} h^{2} - 5 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a c^{\frac {3}{2}} e g^{2} h^{3} + 3 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a c^{\frac {3}{2}} d g h^{4} - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a^{2} \sqrt {c} f g h^{4} + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a^{2} \sqrt {c} e h^{5} - 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a c^{2} f g^{4} h - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a c^{2} e g^{3} h^{2} + 10 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a c^{2} d g^{2} h^{3} - 11 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{2} c f g^{2} h^{3} + 5 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{2} c e g h^{4} + {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{2} c d h^{5} + a^{2} c^{\frac {3}{2}} f g^{3} h^{2} + a^{2} c^{\frac {3}{2}} e g^{2} h^{3} - 3 \, a^{2} c^{\frac {3}{2}} d g h^{4} + 4 \, a^{3} \sqrt {c} f g h^{4} - 2 \, a^{3} \sqrt {c} e h^{5}}{{\left (c^{2} g^{4} h^{2} + 2 \, a c g^{2} h^{4} + a^{2} h^{6}\right )} {\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} h + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} \sqrt {c} g - a h\right )}^{2}} \]

input
integrate((f*x^2+e*x+d)/(h*x+g)^3/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
-(2*c^2*d*g^2 - a*c*f*g^2 + 3*a*c*e*g*h - a*c*d*h^2 + 2*a^2*f*h^2)*arctan( 
((sqrt(c)*x - sqrt(c*x^2 + a))*h + sqrt(c)*g)/sqrt(-c*g^2 - a*h^2))/((c^2* 
g^4 + 2*a*c*g^2*h^2 + a^2*h^4)*sqrt(-c*g^2 - a*h^2)) + (2*(sqrt(c)*x - sqr 
t(c*x^2 + a))^3*c^2*f*g^4*h - 2*(sqrt(c)*x - sqrt(c*x^2 + a))^3*c^2*d*g^2* 
h^3 + 5*(sqrt(c)*x - sqrt(c*x^2 + a))^3*a*c*f*g^2*h^3 - 3*(sqrt(c)*x - sqr 
t(c*x^2 + a))^3*a*c*e*g*h^4 + (sqrt(c)*x - sqrt(c*x^2 + a))^3*a*c*d*h^5 + 
2*(sqrt(c)*x - sqrt(c*x^2 + a))^2*c^(5/2)*f*g^5 + 2*(sqrt(c)*x - sqrt(c*x^ 
2 + a))^2*c^(5/2)*e*g^4*h - 6*(sqrt(c)*x - sqrt(c*x^2 + a))^2*c^(5/2)*d*g^ 
3*h^2 + 7*(sqrt(c)*x - sqrt(c*x^2 + a))^2*a*c^(3/2)*f*g^3*h^2 - 5*(sqrt(c) 
*x - sqrt(c*x^2 + a))^2*a*c^(3/2)*e*g^2*h^3 + 3*(sqrt(c)*x - sqrt(c*x^2 + 
a))^2*a*c^(3/2)*d*g*h^4 - 4*(sqrt(c)*x - sqrt(c*x^2 + a))^2*a^2*sqrt(c)*f* 
g*h^4 + 2*(sqrt(c)*x - sqrt(c*x^2 + a))^2*a^2*sqrt(c)*e*h^5 - 2*(sqrt(c)*x 
 - sqrt(c*x^2 + a))*a*c^2*f*g^4*h - 4*(sqrt(c)*x - sqrt(c*x^2 + a))*a*c^2* 
e*g^3*h^2 + 10*(sqrt(c)*x - sqrt(c*x^2 + a))*a*c^2*d*g^2*h^3 - 11*(sqrt(c) 
*x - sqrt(c*x^2 + a))*a^2*c*f*g^2*h^3 + 5*(sqrt(c)*x - sqrt(c*x^2 + a))*a^ 
2*c*e*g*h^4 + (sqrt(c)*x - sqrt(c*x^2 + a))*a^2*c*d*h^5 + a^2*c^(3/2)*f*g^ 
3*h^2 + a^2*c^(3/2)*e*g^2*h^3 - 3*a^2*c^(3/2)*d*g*h^4 + 4*a^3*sqrt(c)*f*g* 
h^4 - 2*a^3*sqrt(c)*e*h^5)/((c^2*g^4*h^2 + 2*a*c*g^2*h^4 + a^2*h^6)*((sqrt 
(c)*x - sqrt(c*x^2 + a))^2*h + 2*(sqrt(c)*x - sqrt(c*x^2 + a))*sqrt(c)*g - 
 a*h)^2)
 
3.2.7.9 Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2}{(g+h x)^3 \sqrt {a+c x^2}} \, dx=\int \frac {f\,x^2+e\,x+d}{{\left (g+h\,x\right )}^3\,\sqrt {c\,x^2+a}} \,d x \]

input
int((d + e*x + f*x^2)/((g + h*x)^3*(a + c*x^2)^(1/2)),x)
 
output
int((d + e*x + f*x^2)/((g + h*x)^3*(a + c*x^2)^(1/2)), x)